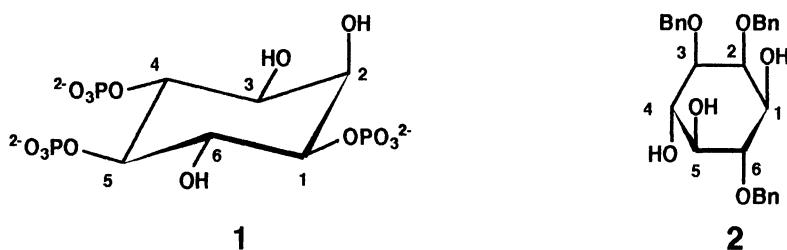
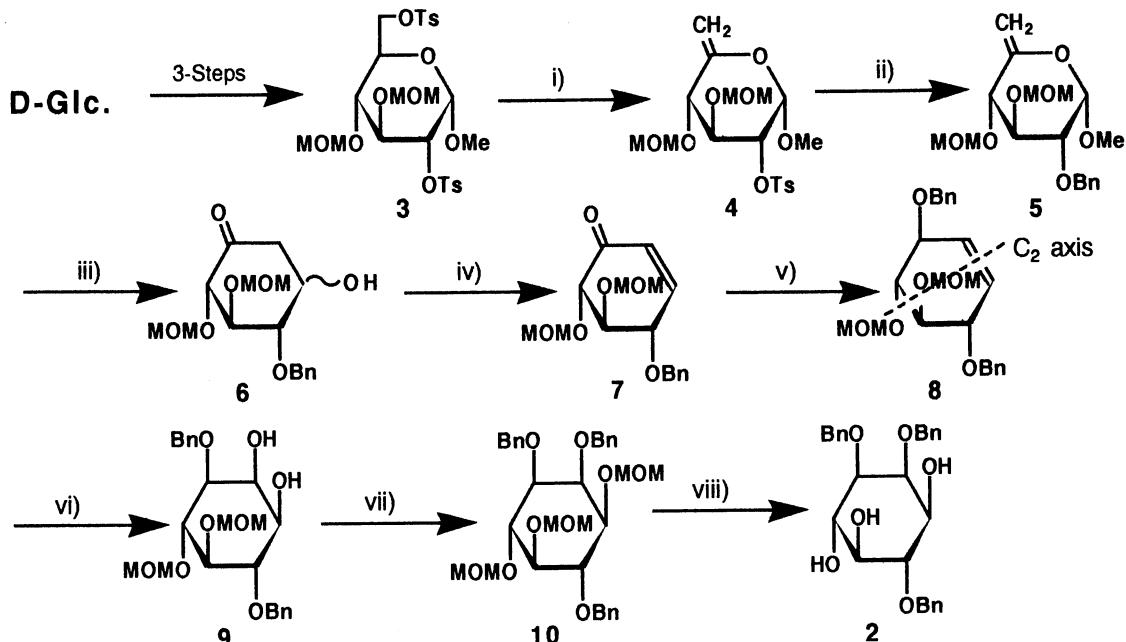


Synthesis of Optically Active 2,3,6-Tri-O-benzyl-D-*myo*-inositol from D-Glucose


Ken-ichi SATO,* Shogo SAKUMA, Shinya MURAMATSU, and Masayuki BOKURA

Laboratory of Organic Chemistry, Faculty of Engineering,
Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221


The title compound was synthesized from D-glucose as a key intermediate of D-Inositol-1,4,5-triphosphate synthesis without doing any optical resolution by utilizing C_2 symmetry.

Since the discovery of the role of D-*myo*-inositol 1,4,5-triphosphate(**IP₃**, **1**) as an intracellular second messenger for calcium mobilization,¹⁾ a great biological interest in **IP₃** has been increased. In order to explore the biochemical processes, a simple, general, and efficient methodology for chemical syntheses of **IP₃**, **1** and its derivatives is required. Up to date, for the synthesis of **IP₃** and its derivatives, *myo*-inositol has been mainly used as a starting material. But previous methods have required a optical resolution. Here we now report a new strategy for synthesizing the partially-protected key intermediate, 2,3,6-tri-O-benzyl-*myo*-inositol(**2**)²⁾ from D-glucose.

Methyl 3,4-di-O-methoxymethyl-2,6-di-O-p-tolylsulfonyl- α -D-glucopyranoside(**3**) was prepared from D-glucose in 56 % yield (3 steps) (Scheme 1). 6-Deoxyhex-5-enopyranoside derivative(**4**) was synthesized by treatment of **3** with sodium iodide, tetrabutylammonium iodide, 1,8-diazabicyclo[5.4.0]undec-7-ene(DBU) and molecular sieves 4A in dimethyl sulfoxide(DMSO) at 80-110 °C (one pot reaction,³⁾ 63% yield). Detosylation of compound **4** followed by protection with benzyl group gave methyl 2-O-benzyl-6-deoxy-3,4-di-O-methoxymethyl- α -D-*xylo*-hex-5-enopyranoside (**5**) in 87% yield. Ferrier reaction⁴⁾ of **5** gave partially-protected 2,3,4,5-tetrahydroxycyclohexanone derivative(**6**) which was treated with acetic anhydride in pyridine to give the corresponding enone derivative (**7**) in 77% yield(2 steps). Reduction of **7** with sodium borohydride-celium chloride in ethanol, followed by benzylation of hydroxyl group gave protected cyclohexenol derivative[**8**: NMR (CDCl₃): δ 3.79 and 4.17 ppm (each dd, 4H, A₂B₂, J=5.1, 2.4 Hz), 5.73 (s, 2H)] in 89% yield (2 steps). Oxidation of compound **8**, which has C_2 symmetry axis, with osmium tetroxide gave partially protected *myo*-inositol derivative(**9**) in 83% yield. Regioselective protection of vicinal hydroxyl group by use of tris butyl stanyl oxide and methoxymethyl chloride, followed by benzylation of remaining hydroxyl group gave full

protected *myo*-inositol derivative [10: mp 70-72 °C (EtOH-hexane), $[\alpha]_D +8.6^\circ$ (c 0.3, CHCl_3), NMR: δ 7.38-7.27(m, 15H, 3xPh), 4.94-4.58(m, 12H, 6x- CH_2), 4.07(dd, $J_{4,3}=J_{4,5}=9.5$ Hz, H-4), 3.96(dd, $J_{2,1}=2.4$, $J_{2,3}=2.0$ Hz, H-2), 3.94(dd, $J_{6,1}=J_{6,5}=9.8$ Hz, H-6), 3.48(dd, H-1), 3.47(dd, H-5), 3.35(dd, H-3), 3.41, 3.39, and 3.30(each s, 3xOMe)] in 79% yield (2 steps). Hydrolytic removal of methoxymethyl group of 10 gave title compound 2,3,6-tri-O-benzyl-D-*myo*-inositol [2: mp 117-119 °C (EtOH-H₂O), $[\alpha]_D +12.4^\circ$ (c 0.8, CHCl_3), lit.²⁾ mp 117-119 °C, $[\alpha]_D +15.5^\circ$ (CHCl_3), NMR(CHCl_3): δ 7.40-7.29(m, 15H, 3xPh), 4.97-4.55(m, 6H, 3x- CH_2), 4.08(dd, $J_{2,1}=J_{2,3}=2.7$, H-2), 4.01(ddd, $J_{4,3}=J_{4,5}=9.8$, $J_{4,\text{OH}}=2.7$ Hz, H-4), 3.68(dd, $J_{6,5}=J_{6,1}=9.2$ Hz, H-6), 3.52(ddd, $J_{1,\text{OH}}=6.6$ Hz, H-1), 3.47(ddd, $J_{5,\text{OH}}=2.7$ Hz, H-5), 3.29(dd, H-3), 2.65 and 2.61(each d, 2xOH), 2.34(d, OH)] in 90% yield. Thus the method proposed herein may promise a wide application to the preparation of inositol phosphate derivatives.

i) $\text{NaI}, \text{Bu}_4\text{NI}, \text{DBU} / \text{DMSO}, 90^\circ\text{C}, 63\%$. ii) $\text{NaOMe} / \text{MeOH}, \text{NaH}, \text{BnBr} / \text{DMF}, 87\%$.

iii) $\text{Hg}(\text{OAc})_2 / \text{acetone-H}_2\text{O}$, reflux, 77%. iv) $\text{Ac}_2\text{O} / \text{pyridine}$, quantitative. NaBH_4 ,

$\text{CeCl}_3 \cdot 7\text{H}_2\text{O} / \text{CH}_2\text{Cl}_2\text{-EtOH}, -78^\circ\text{C}, 91\%$. v) $\text{NaH}, \text{BnBr} / \text{DMF}, 98\%$. vi) OsO_4, NMO

(4-methylmorpholine N-oxide) / acetone- H_2O , r.t 83%. vii) $n\text{-Bu}_2\text{SnO} / \text{C}_6\text{H}_6$, reflux, then $\text{MOMCl}, \text{Et}_3\text{N} / \text{C}_6\text{H}_6$, r.t. $\text{NaH}, \text{BnBr} / \text{DMF}, 79\%$. viii) 0.1M HCl -MeOH, 63 °C, 90%

Scheme 1.

References

- 1) A. A. Abdel-Latif, *Pharmacol. Rev.*, **38**, 227 (1986); R. H. Michaell, *Nature*, **320**, 63 (1986).
- 2) S. Ozaki, Y. Watanabe, T. Ogasawara, Y. Kondo, N. Shiotani, H. Nishi, and T. Matsuki, *Tetrahedron Lett.*, **1986**, 3157.
- 3) K. Sato, N. Kubo, R. Takada, A. Aqeel, H. Hashimoto, and J. Yoshimura, *Chem. Lett.*, **1988**, 1703.
- 4) R. J. Ferrier, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 1455; K. Sato, S. Sakuma, Y. Nakamura, J. Yoshimura, and H. Hashimoto, *Chem. Lett.*, **1991**, 17.

(Received June 11, 1991)